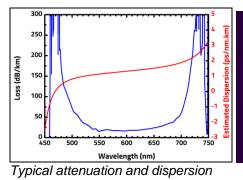
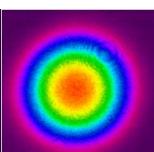
STG Series Hollow-core Crystal Fibers


- Nearly single mode guidance
- Low dispersion, low loss
- High power and energy handling
- Broadband spectral coverage

1. STG-C-Green Series Hollow-core Fibers

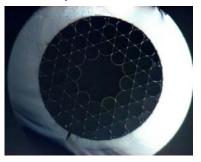

Hollow-core fiber optimized for 500-700nm range

Physical Properties	
Core contour	Hypocycloïde
Inner core Ø	63 μm ± 1
Outer fiber Ø	300 µm ± 3%
Fiber coating layer	Primary polymer coating
Optical Properties	
Center Wavelength	800nm / 1600 nm
Attenuation @ 532nm	30 dB/km ±10
Dispersion @ 532nm	1.5 ps/nm.km ± 0.5
Transmission Band**	200 nm
Mode field Diameter	24 µm ± 1
3dB bend loss radius	10 cm ± 2

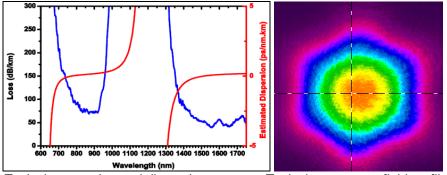
**Attenuation lower than 100 dB/km for the 500-700nm

Output near field profile

Output far field profile


2. STG-C-TiSa Er-7C

Kagome hollow core fiber with optimized performance for 800nm and 1550nm. Ideal for Ti-Sapphire and Erbium based lasers

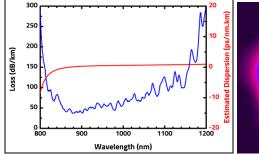

- · Broad spectral coverage
- · Large core size
- Nearly single mode guidance
- Low dispersion
- · Record-high laser damage threshold

Physical Properties	
Core contour	Hypocycloïde with negative curvature parameter b=1*
Inner core Ø	63 μm ± 1
Outer fiber Ø	300 μm ± 3%
Fiber coating layer	Primary polymer coating
Optical Properties	
Center Wavelength	800 / 1600 nm
Attenuation @ 532nm	<80 dB/km ±10
Dispersion @ 532nm	1 ps/nm.km ± 0.5
Transmission Band**	>100nm / >300nm
Mode field Diameter	44 μm ± 1
3dB bend loss radius	5 cm ± 2

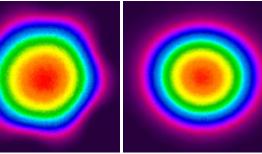
**Attenuation lower than 100 dB/km for the 1300-1750nm

-

Typical attenuation and dispersion


Typical output near field profile @ 800nm

3. STG-C-Yb-7C

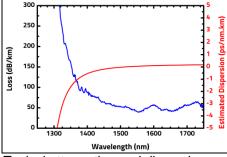

Hollow-Core Fiber optimized for 900-1100nm range. Ideal for Yb and Nd:YAG based lasers.

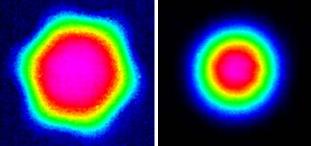
Physical Properties	
Core contour	Hypocycloïde with negative curvature parameter b>0.7*
Inner core Ø	57 μm ± 1
Outer fiber Ø	320 μm ± 3%
Fiber coating layer	Primary polymer coating
Optical Properties	
Center Wavelength	1030 nm
Attenuation @ 532nm	<100 dB/km
Dispersion @ 532nm	1 ps/nm.km ± 0.5
Transmission Band**	300 nm
Mode field Diameter	39 µm ± 1
3dB bend loss radius	5 cm ± 2

**Attenuation lower than 100 dB/km for the 850-1150nm

Typical attenuation and dispersion

Output near field profile

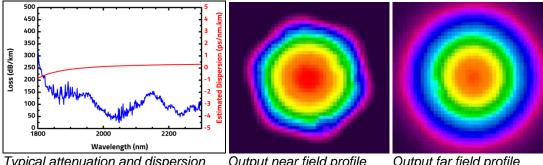

Output far field profile


4. STG-C-Er-7C

Hollow-Core Fiber optimized for 1550nm. Ideal for Erbium lasers.

Hypocycloïde with negative curvature parameter b=0.8*
61 μm ± 1
432 μm ± 3%
Primary polymer coating
1550 nm
<50 dB/km
1 ps/nm.km ± 0.5
400 nm
42 μm ± 1
5 cm ± 2

**Attenuation lower than 100 dB/km for the 1375-1750nm

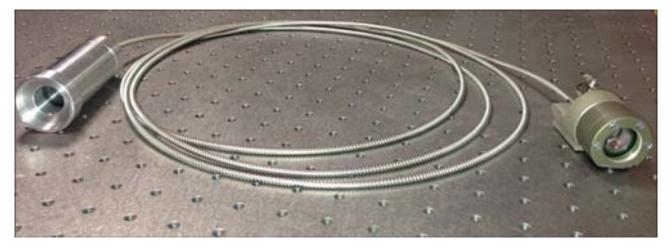

Typical attenuation and dispersion

Output near field profile Output far field profile

5. STGLO-C-2µm-7C Hollow-Core Fiber optimized for 2-3µm range.

Physical Properties	
Core contour	Hypocycloïde with negative curvature parameter b>0.7*
Inner core Ø	56 μm ± 1
Outer fiber Ø	415 μm ± 3%
Fiber coating layer	Primary polymer coating
Optical Properties	
Center Wavelength	2000 nm
Attenuation @ 532nm	60 dB/km
Dispersion @ 532nm	1 ps/nm.km ± 0.5
Transmission Band**	>350 nm
Mode field Diameter	42 μm ± 1
3dB bend loss radius	5 cm ± 2

**Attenuation lower than 100 dB/km for the 850-1150nm



Typical attenuation and dispersion

Output near field profile

Output far field profile

STG Photonic Microcell

Our technology is based on Hollow-Core Photonic Crystal Fiber (HC-PCF) and the process of filling the fiber with a chosen gas to offer photonic functionalities such as (i) Optical frequency conversion, (ii) Ultra-high power pulsed laser delivery (iii) Laser pulse compression or (iv) Frequency standards.

A PMC is a stand-alone and modular component that consists of a HC-PCF filled with gas and fiber terminations. The presence of gas within an optical fibre on a micron scale provides a million-fold increase in the gas-laser efficiency compared to traditional lasing methods and opens up the unique ability for functionalization. For example, with a Raman gas one can produce new wavelengths and hence create new applications. There are different variants of HC-PCF used within the PMC family of components. The Inhibited-Coupling guiding HC-PCF such as Kagome fiber produces particularly good results with a high damage threshold and a very wide bandwidth.

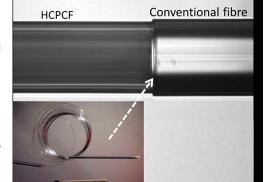
The PMC comes in different forms tailored to either the applications or the laser power requirements or to specific housing requirements. Below is a list of the different PMC forms we can deliver.

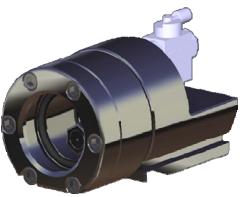
1. ALL-FIBER PMC

An optical fiber made of a length of HC-PCF filled with gas and spliced to a solid optical fiber.

- · Gas type: typically any molecular gas. atomic vapor
- Gas pressure ranges: from High vacuum pressure to several bars.
- Splice loss: typically 1 dB/splice.
- Ideal for low power laser applications such as telecommunications, instrumentations, frequency standards, Frequency conversion.

2. GAS-FILLABLE & TRAVEL STAGE MOUNTABLE PMC-TERMINATION


This PMC has at least one of its terminations exhibiting a gasfillable cell. This cell is mountable on standard translation stages for quick and efficient laser coupling.


- Gas injection
- Rugged tube-over-fiber
- Micro-bending elimination
- Macro-bending restraint
- Dust contamination prevention
- Ideal for high power applications such as ultra-short pulse laser beam delivery, laser pulse compression, frequency converter.

3. TUBULAR CELL PMC-TERMINATION

This PMC has at least one of its terminations exhibiting a tubular cell. This cell can be mounted on and/or integrated in standard opto-mechanical holders or systems.

• Rugged tube-over-fiber

10 Bukit Batock Crescent #07-02 The Spire Singapore 658079 Tel: 6316 7112 Fax: 63167113 http://www.SintecOptronics.com http://www.sintec.sg sales@sintec.sg sales@SintecOptronics.com

- Micro-bending elimination
- Macro-bending restraint
- Dust prevention
- Ideal for high power applications such as ultra-short pulse laser beam delivery, laser pulse compression, frequency convertor.

STG Beam Delivery System

STG-BDS is a new and user friendly module for high power laser beam delivery. It brings the outstanding fast lasers pulse energy and power handling of our fiber's technology in a ruggedized and pre-aligned module.

1. STG-BDS-Green Beam Delivery System

Physical Properties		
Fiber length**	2 m , 3 m, 5 m	
Output beam quality	M²<1.3	
Gas/Vacuum connection	KF16	
Fiber protection**	Metallic monocoil	
Min bend radius	200 mm	
Optical Properties		
Working wavelength**	515 nm / 532 nm	
Attenuation	<100 dB/km	
Dispersion @ Working wavelength	1 ps/nm/km ± 0.5	
Transmission band***	>100 nm	
***Attenuation lower than 100 dB/km		
Input beam requirement**	3 mm ± 0.1	
Bend loss @ 20 cm bend radius	< 1 dB	

**Others upon request

All specifications could be changed without notice

2. STG-BDS-Yb&NdYag

Physical Properties		
Fiber length**	2 m , 3 m, 5 m	
Output beam quality	M ² <1.3	
Gas/Vacuum connection	KF16	
Fiber protection**	Metallic monocoil	
Min bend radius	200 mm	
Optical Properties		
Working wavelength**	1030 nm / 1064 nm	
Attenuation	<50 dB/km	
Dispersion @ Working wavelength	1 ps/nm/km ± 0.5	
Transmission band***	>200 nm	
***Attenuation lower than 100 dB/km		
Input beam requirement**	2.9 mm ± 0.1	
Bend loss @ 20 cm bend radius	< 1 dB	

**Others upon request All specifications could be changed without notice

3. STG CombLas

- Photonic Micro-Cell based Raman wavelength convertor
- Ruggedized packaging
- Long life-time
- Ultra-low pump threshold
- Compatible with most pulsed lasers
- Battery powered
- UV-VIS spectral coverage (over 20 lines)
- Single mode
- Ideal for bio-photonic applications

More than 20 lasers in 1

Optical Properties*	
Pump wavelength	532 nm
Spectral coverage	350-800 nm
Line spacing	17.6 Thz
Average output power	9 mW

